NAVAL POSTGRADUATE SCHOOL Monterey, California

THE CENTROID AND INERTIA TENSOR
 FOR A SPHERICAL TRIANGLE

by
John E. Brock

1 November
1974

Approved for public release; distribution unlimited.

NAVAL POSTGRADUATE SCHOOL Monterey, California

Rear Admiral Isham Linder
J. R. Borsting

Superintendent

THE CENIROID AND INERTIA TENSOR FOR A SPHERICAL TRIANGLE

This monograph establishes formulas for the centroidal vector and the inertia tensor of a mass distribution which is uniform on the surface of a general spherical triangle. These results supplement formula-lists for useful, fundamental mass distributions such as that given in E. A. Milne's VECTORIAL MECHANICS.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entored)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER NPS-59BC74111A 2. GOVT ACCESSION NO.	3. RECIPIENT's CATALOG number
4. TitLE (and Subtulte) THE CENIROID AND INERTIA TENSOR FOR A SPIERICAL TRIANGLE	5. TYPE OF REPORT A PERIOD COVERED
7. AUTHOR(s) John E. Brock	8. CONTRACT OR GRANT NUMEER(o)
9. PERFORMING organization name and address Professor John E. Brock (Code 59Bc) Department of Mechanical Engineering Naval Postgraduate School	10. PROGRAM ELEMENT, PROJECT, TASK AREA Q WOR UNIT NUMEERS
11. Controlling office name and adoress	12. REPORT DATE l November 1974
	13. NUMBER OF PAGES 13
14. MONITORING AGENCY NAME ADDRESS(If different from Controliting Offico)	is. SECURITY CLASS. (ot thta roport) Unclassified
	15a. DECLASSIFICATION/DOHNGRADING SCHEOULE

16. DIS RIIGUTION STATEMENT (ot this Report)

Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstrect ontered In Block 20, if difforent from Roporf)
18. SUPPLEMENTARY NOTES
19. KEY WORJS (Continuo on rovorso aldo $1 f$ nocoasary and idontify by block numbor)

Dyadic Spherical Triangle
Inertia
Tensor
Inertia Dyadic
Inertia Tensor
20. ÁDSTPACT (Constnue orisevorso alde II nocesasy and lientlify by block number)

This monograph establishes formulas for the centroidal vector and the inertia tensor of a mass distribution which is uniform on the surface of a general spherical triangle. These results supplement formula-lists for useful, fundamental mass distributions such as that given in E. A. Milne's VECTORIAL MECHANICS.

> THE CENTROID AIND INERTIA TENSOR
> FOR A SPHERICAL TRIANGLE
> by
> Join E. Brock
> Professor of Mechanical Engineering, NPS

The list of fomulas for inertia tensors given by E. A. ialne in his textbook Vectorial Vechanics (Interscience, 1948) inclucies many of the fundamental mass distributions which are useful in practice. About twenty years ago the witer thought it would be interesting to acd to this list a formula for the case of uniform mass distribution on tne surface of a feneral spherical triansle, but other occupations have prevented his completing this task until quite recently.

A very brief note, givint the fomula for tine ineritia tonsor and also the formula locating the mass center, has been subniltted for publication in a standard jourmal so as to maice the results widely available. However, even though the derivations are straightfortard, the viewpoint and enough of the details are sufficiently comblicated to warrant their preservation and it is the numose of this brief nonomranh to do this.

We are concorned with a unifom mass ciestribution over the spherical trianzle T:ABC (cf. Pisure l) wich lies on the surface of \therefore sphere havin raiius r and center O. Thiansle T is specified by vectoris $\bar{a}, \overline{0}$, and \vec{c} such that ra$=\overline{O A}$, rō $=\overline{O B}$, and $\bar{r} \bar{C}=\overline{O C}$. We ane aiso giren eitner 10 , the total mass, or m, the mass per unit area. Without ultinate loss of éenerality we take $r=1$ and require that each of the ancles

Figure 1

$\hat{A}=\operatorname{angle}(B O C), \hat{B}=\operatorname{angle}(C O A)$, and $\hat{C}=$ angle $(A O B)$, respectively, not exceed $\pi / 2$. This assures a projection property we will use and also that $\bar{a} \cdot \bar{b} \times \bar{c}>0$. Let the letters A, B, and C also denote the vertex angles of T at A, B, and C. respectively. Also, introduce the following notations:

$$
\begin{array}{lll}
\sigma=\bar{a} \cdot \bar{b} \times \bar{c} & & \\
\bar{\alpha}=\bar{b} \times \bar{c} / \sigma, & \bar{\beta}=\bar{c} \times \bar{a} / \sigma, & \bar{\gamma}=\bar{a} \times \bar{b} / \sigma \\
\lambda=\bar{b} \cdot \bar{c}, & \mu=\bar{c} \cdot \bar{a}, & \nu=\bar{a} \cdot \bar{b} \\
\zeta=\sqrt{1-\lambda^{2}}, & \eta=\sqrt{1-\mu^{2}}, & \theta=\sqrt{1-\nu^{2}}
\end{array}
$$

Note that

$$
|\bar{\alpha}|=\zeta / \sigma, \quad|\bar{\beta}|=n / \sigma, \quad|\bar{\gamma}|=\theta / \sigma
$$

and also recall the elementary results

$$
\begin{aligned}
& \sigma^{2}=1-\lambda^{2}-\mu^{2}-v^{2}+2 \lambda \mu \nu \\
& u=\bar{a} \bar{\alpha}+\overline{b \bar{\beta}}+\bar{c} \bar{\gamma}
\end{aligned}
$$

(We use script letters to denote dyacics; u denotes the unit dyadic.)
Our general procedure in detemining a desired tensor A or vector $\overline{\mathrm{v}}$ will be by use of the formulas

$$
\begin{aligned}
& A=A \cdot u=(A \cdot \bar{a}) \bar{u}+(A \cdot \bar{b}) \bar{\beta}+(A \cdot \bar{c}) \bar{\gamma} \\
& \bar{v}=\bar{v} \cdot u=(\bar{v} \cdot \bar{a}) \bar{c} \bar{c}+(\bar{v} \cdot \bar{b}) \bar{\beta}+(\bar{v} \cdot \bar{c}) \bar{\gamma}
\end{aligned}
$$

and to determine the cot-product $A \cdot \bar{c}$ or $\overline{\mathrm{V}} \cdot \overline{\mathrm{C}}$. By a cyclical interciance of parameters, the other dot-yroducts may easily de detemined, thus establishing tine desired result.

In this procedure we will deal with the projection of T into a plane figure ${ }^{\prime \prime}$ lying in the plane $I I$ wich passes through 0 pereendicular to \bar{c}. The dyadic wich performs this oneration is

$$
P=u-\bar{c} \bar{c}
$$

(2)

Arc AI3 is part of the great circle K whose nomal is in the direction of $\bar{\gamma}$. It projects into the elliose E in Π. The "node" in is at unit distance from O and in the direction of

$$
\bar{p}=\bar{c} \times(\bar{a} \times \bar{b})=\lambda \bar{a}-\mu \bar{b}=p \bar{m}
$$

where \bar{m} is the unit vector $\overline{\mathrm{O}}$ and the marnitude of $\overline{\mathrm{p}}$ is

$$
p=\sqrt{\lambda^{2}+\mu^{2}-2 \lambda \mu \nu}
$$

We also note that

$$
\theta^{2}=p^{2}+\sigma^{2}
$$

Let A^{\prime} and B^{\prime} be the projections of A and B, respectively, and let the unit vectors \bar{a} ' alons $\overline{O A} '$ 'and $\overline{\mathrm{D}}$ ' alonf $\overline{O B}$ ' be defined by the relations

$$
\overline{O A}^{\prime}=P \cdot \bar{a}=\bar{a}-\mu \bar{c}=n \bar{a}^{\prime}, \quad \bar{O} \overline{3}^{\prime}=p \cdot \bar{b}=\bar{b}-\lambda \bar{c}=\zeta \bar{b}^{\prime}
$$

Althougin we note that

$$
\sin C=\bar{c} \cdot \bar{a}^{\prime} \times \bar{b}^{\prime}=\sigma / n \zeta
$$

we can also use

$$
\cos C=\bar{a}^{\prime} \cdot \bar{b}^{\prime}=(\nu-\lambda \mu) / n \zeta
$$

to detemine C without ambisuity. Similar fomulas detemine vertex angles A and B.

We will let P be a general point of T , let $\overline{\mathrm{r}}$ denote the (unit) vector $\overline{O P}$, and let ϕ denote the ansle COP. If $d S$ is an areal elemont of T, its projection on II is the areal element

$$
d S^{\prime}=d S \cos \phi
$$

of the figure 'r' which is bounded by straight lines $O A^{\prime}$ and $O B^{\prime}$ and $b y$ a portion of the sllinse E wose semi-major axis is unity and wose semiminor axis is $\bar{c} \cdot \bar{\gamma} \sigma / 0=0 / \theta$. Accondincly, by masuring a polan anle ψ from "nodal" line On, the poiar equation of E may be determineu to be

$$
R^{2}=\sigma^{2} /\left(\sigma^{2}+p^{2} \sin ^{2} \psi\right)
$$

It will be useful to establish the relations summarized in Table l, below. (Cf. the draning of figure T shown in figure 2.) In particular we calculate

$$
\cos \psi_{1}=\bar{m} \cdot \bar{a}^{\prime} ; \cos \psi_{2}=\bar{m} \cdot \overline{\mathrm{a}}^{\prime} ; \cos (\mathrm{MA})=\overline{\mathrm{m}} \cdot \overline{\mathrm{a}} ; \cos (\mathrm{IDB})=\overline{\mathrm{m}} \cdot \overline{\mathrm{~b}}
$$

TABLE 1 Anrles and their functions

Symiol Description Sine Cosine

A Vertex.at A $\sigma / n \theta \quad(\lambda-\mu \nu) / \eta \theta$
B Vertex at B $\sigma / \theta \zeta \quad(\mu-\nu \lambda) / \theta \zeta$
C Vertex at C $\sigma / \zeta \eta \quad(\nu-\lambda \mu) / \zeta \eta$
$\psi_{1} \quad$ MOA $\quad \mu \sigma / p \eta \quad(\lambda-\mu \nu) / p n$
$\psi_{2} \quad I D B, \quad \lambda \sigma / p \zeta \quad-(\mu-\nu \lambda) / p \zeta$

- \quad ió $\quad \mu \hat{\theta} / \mathrm{p} \quad(\lambda-\mu \nu) / p$
- $\begin{array}{lll}\mathrm{NO} & \lambda \theta / \mathrm{p} & -(\mu-\nu \lambda) / \mathrm{p}\end{array}$

The area of I' is

$$
\begin{aligned}
S & =\int_{T} d S=\int_{\mathrm{T}} \sec \phi d S^{\prime}=\int_{\psi_{1}}^{\psi_{2}} \int_{0}^{R} \frac{\rho d o}{\sqrt{1-\rho^{2}}} d \theta \\
& =\int_{\psi_{1}}^{\psi_{2}}\left[1-\sin \psi / \sqrt{(\theta / p)^{2}-\cos ^{2} \psi}\right] d \psi \\
& =\left[\psi^{\prime}-\arccos \left(\frac{p \cos \psi}{\theta}\right)\right]_{\psi_{1}}^{\psi_{2}} \\
& =\left(\psi_{2}-\psi_{1}\right)-\arccos (-\cos A)+\arccos (\cos B) \\
& =C-(\pi-B)+A=A+B+C-\pi=e
\end{aligned}
$$

where ne nave used the smbol e to denote the "soherical excess." This result is, of course, very well kmom and the purpose of micing the calculation nere is sinply to indicate the metnod of integration Which will be used to estabitish other useful results.

We will next locate the mass center G of the distribution by evaluating tine vector

$$
\overline{O G}=\bar{g}=\frac{I}{S} \int_{T} \bar{r} \mathrm{dS}=(\overline{\mathrm{G}} \cdot \overline{\mathrm{a}}) \bar{\alpha}+(\overline{\mathrm{g}} \cdot \overline{\mathrm{~b}}) \bar{\beta}+(\overline{\mathrm{g}} \cdot \overline{\mathrm{c}}) \bar{\gamma}
$$

Therefore

$$
\begin{aligned}
\operatorname{Sic} \cdot \overline{\mathrm{g}} & =\int_{\mathrm{T}} \overline{\mathrm{c}} \cdot \bar{r} d S=\int_{T} \cos \phi d S=\int_{T^{\prime}} d S^{\prime}=S^{\prime} \\
& =\int_{\psi_{1}}^{\psi_{2}} \int_{0}^{R} \rho d \rho d \psi=\frac{1}{2} \int_{\psi_{1}}^{\psi_{2}} R^{2} d \psi=\frac{\sigma^{2}}{2} \int_{\psi_{1}}^{\psi_{2}} \frac{d \psi}{\theta^{2} \sin ^{2} \psi+\sigma^{2} \cos ^{2} \psi} \\
& =(\sigma / 2 \theta)\left\{\arctan [(\theta / \sigma) \tan \psi]_{\psi_{1}}\right. \\
& =(\sigma / 2 \theta)[\operatorname{angle}(H i 3)-\operatorname{angle}(i O A)]=\sigma \hat{C} / 2 \theta
\end{aligned}
$$

Similar results may be obtained for $\overline{\mathrm{a}} \overline{\mathrm{G}}$ and $\overline{\mathrm{b}} \overline{\mathrm{g}}$, and upon removini the restriction $r=1$, we obtain

$$
\overline{\mathrm{B}}=(r / 2 e)\left[\frac{\overline{\bar{a}} \times \bar{b}}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|} \hat{C}+(\imath)+(\imath)^{2}\right]
$$

where the symbol (\sim) indicates that the tern is to be obtained by the cyclic interchange $\overline{\mathrm{a}} \rightarrow \overline{\mathrm{b}} \rightarrow \overline{\mathrm{C}}$ and $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$.

Again temorarily assuming $r=1$, we note that vine liefinition of the tensor of ineriia, at O, of this mass distribution, is

$$
I_{0}=m \int_{T}(U-\bar{r} \bar{r}) d S
$$

and it is clear that only the second tem imposes any difficulty. Write

$$
J=\int_{T} \bar{r} \bar{d} \hat{C}
$$

No:

$$
\bar{r}=U \cdot \bar{r}=(p+\bar{c} \bar{c}) \cdot \bar{r}=\bar{r}^{\prime}+\bar{c} \cos \phi
$$

where the vector $\overline{r^{\prime}}$ lies in the plane π. Thus

$$
\begin{aligned}
J \cdot \bar{c} & =\int_{T} \bar{c} \cdot \overline{r r} d S=\int_{T}(\cos \phi)\left(\overline{r^{\prime}}+\bar{c} \cos \phi\right) d \overline{U s} \\
& =\int_{T^{\prime}} \bar{r}^{\prime} d S^{\prime}+\bar{c} \int_{T^{\prime}} \cos \phi d S^{\prime}=\bar{J}_{1}+\bar{c} J_{2}
\end{aligned}
$$

where the meanings of the symbolds \bar{J}_{1} and J_{2} are evident. We first evaluate tio scalar J_{2}.

$$
J_{2}=\int_{T^{\prime}} \cos \phi \dot{U}^{\prime}=\int_{\psi_{1}}^{\psi_{2}} \int_{0}^{R} \sqrt{1 \cdots \rho^{2}} \rho d \rho d \psi
$$

$$
\begin{aligned}
J_{2} & =\frac{1}{3} \int_{\psi_{1}}^{\psi_{2}}\left[1-\left(I-R^{2}\right)^{3 / 2}\right] d \psi=\frac{1}{3} \int_{\psi_{1}}^{\psi_{2}}\left\{1-\left[(\theta / p)^{2}-\cos ^{2} \psi\right]^{-3 / 2} \sin ^{3} \psi\right\} d \psi \\
& =\frac{1}{3}\left\{\psi-\sigma p R(\cos \psi) / \theta^{2}-\arccos \left(\frac{p}{\theta} \cos \psi\right)\right]_{\psi_{1}}^{\psi_{2}} \\
& =\left[e+\sigma(\lambda+\mu)(1-v) / \theta^{2}\right] / 3
\end{aligned}
$$

Before proceding further we establisn the unit vector

$$
\bar{n}=\bar{c} \times \bar{n}=\left[(\mu-\nu \lambda) \bar{a}+(\lambda-\mu \nu) \bar{b}-p^{2} \bar{c}\right] / p \sigma
$$

which lies in plane Π perpendicular to \bar{m}. We evidently have

$$
\vec{r}^{\prime}=\rho(\vec{m} \cos \psi+\vec{n} \sin \psi)
$$

so tha.t

$$
\begin{aligned}
& \vec{J}_{1}=\int_{\psi_{1}}^{\psi_{2}}(\overrightarrow{\mathrm{~m}} \cos \psi+\overline{\mathrm{n}} \cos \psi) \int_{0}^{R} \rho^{2} \mathrm{~d} \rho \mathrm{~d} \psi \\
& =\frac{1}{3} \int_{\psi_{1}}^{\psi_{2}}(\bar{m} \cos \psi+\bar{n} \sin \psi) R^{3} d \psi \\
& =\frac{\sigma^{3}}{3 p}\left(\bar{m} \int_{\psi_{1}}^{\psi_{2}} \frac{p \cos \psi d \psi}{\left(\sigma^{2}+p^{2} \sin ^{2} \psi\right)^{3 / 2}}+\bar{n} \int_{\psi_{1}}^{\psi_{2}} \frac{n \sin \psi d \psi}{\left(\theta^{2}-p^{2} \cos ^{2} \psi\right)^{3 / 2}}\right) \\
& =\left(\sigma / 30^{2}\right)\left[\left(\bar{n} \theta^{2} \sin \psi-\vec{n} \sigma^{2} \cos \psi\right) / \sqrt{\sigma^{2}+p^{2} \sin \psi} \psi_{2}\right. \\
& =\left[\bar{n} \sigma(\lambda-\mu)+\bar{n}(\sigma / \theta)^{2}(\lambda+\mu)(I-\nu)\right] / 3 p \\
& =[\vec{a}+\bar{b}-(\lambda+\mu) \bar{c}] / 3(1+\nu)
\end{aligned}
$$

Trus we have

$$
\vec{c} \cdot I=\sigma(\vec{a}+\bar{b}) / 3(I+v)+\vec{c} e / 3
$$

and

$$
J=e l l / 3+\left[\frac{(\vec{a}+\vec{b}) \vec{a} \times \vec{b}}{1+\bar{a} \cdot \vec{b}}+(\imath)+(\imath)^{2}\right] / 3
$$

Thus, finally, we arrive at the ciesired result

$$
I_{0}=\left(2 \cdot m^{2} / 3\right)\left\{u-\left[(\bar{a}+\bar{b})(\bar{a} \times \vec{b}) /(1+\bar{a} \cdot \bar{b})+(\sim)+(\sim)^{2}\right] / 2 e\right\}
$$

in wich we have also accounted for non-unit value of r.
We have removed the original restriction, introduced for convenience, that $r=1$, out our analysis thus far has veen limited to the case where none of the ares bounding T exceeds $\pi / 2$. We now proceed to remove this restriction. We consider the composition of two triangles, each satis-
the condition (so that the formulas for S, for \bar{E}, and for I_{0} given above are valid) and which, when juxtaposed, form a larger spherical triangle; cf. Figure 3 where C lies on the great circular arc BD. Suppose that the theorems hold for $T: A B C$ and $T *: A C D$. We shall show that they also hold for $\tilde{T}: A B D$. First consider the areas.

$$
S=S+S^{*}=r^{2}\left[(A+B+C-\pi)+\left(A^{*}+C^{*}+D^{*}-\pi\right)\right]=r^{2}(\tilde{A}+\tilde{B}+\tilde{D}-\pi)
$$

since

$$
A+A^{*}=\tilde{A} ; \quad B=\tilde{B}, D^{*}=\tilde{D}, \text { and } C+C^{*}=\pi
$$

For the centroid we have

$$
2 e^{\tilde{g}} / r=2\left(e \bar{\xi}+e^{*} \bar{g}_{\mathrm{g}}^{*}\right) / r=\left(\overline{\mathrm{v}}_{\mathrm{ab}}+\overline{\mathrm{v}}_{\mathrm{bc}}+\overline{\mathrm{v}}_{\mathrm{ca}}\right)+\left(\overline{\mathrm{v}}_{\mathrm{ac}}+\overline{\mathrm{v}}_{\mathrm{cd}}+\overline{\mathrm{v}}_{\mathrm{da}}\right)
$$

where

$$
\bar{v}_{a b}=\bar{a} \times \bar{b} \hat{C}_{l}|\bar{a} \times \bar{b}|, \text { et, } c
$$

Clearly

$$
\overline{\mathrm{v}}_{\mathrm{ca}}+\overline{\mathrm{v}}_{\mathrm{ac}}=0
$$

and also

$$
\overline{\mathrm{v}}_{\mathrm{bc}}+\overline{\mathrm{v}}_{\mathrm{cd}}=\overline{\mathrm{v}}_{\mathrm{bd}}
$$

since these vectors are collinear (perpendicular to the plane OBCD) and

$$
\text { ansle }(B O C)+\operatorname{angle}(C O D)=\operatorname{angle}(B O D)
$$

Thus

$$
2 e \tilde{\tilde{0}} / \mathrm{r}=\overline{\mathrm{v}}_{\mathrm{ab}}+\overline{\mathrm{v}}_{\mathrm{ba}}+\overline{\mathrm{v}}_{\mathrm{da}}
$$

and the result is proved.
For the inertia tensor, introduce the notation

$$
k_{a b}=(\bar{a}+\bar{b})(\bar{a} \times \bar{b}) /(1+\bar{a} \cdot \bar{b}), \text { etc. }
$$

Then

$$
\begin{aligned}
\tilde{I}_{c} & =I_{0}+I_{0}^{*} \\
& =\left(\mathrm{mr}^{4} / 3\right)\left[\left(2\left(\mathrm{e}-k_{\mathrm{ab}}-k_{\mathrm{bc}}-k_{\mathrm{ca}}\right)+\left(2\left(\mathrm{c}^{*}-k_{\mathrm{ac}}-k_{\mathrm{cd}}-k_{\mathrm{da}}\right)\right]\right.\right.
\end{aligned}
$$

$$
=\left(m r^{4} / 3\right)\left(2 U \tilde{e}-k_{a b}-k_{b d}-k_{d a}+E\right)
$$

and we will show that

$$
E=K_{b d}-K_{b c}-K_{c a}-K_{a c}-K_{c d}
$$

vanishes. Obviously

$$
k_{c a}+k_{a c}=0
$$

Thus, consider

$$
\begin{aligned}
K_{b d}-K_{b c} & -K_{c d}=\frac{(\bar{b}+\bar{d})(\bar{b} \times \bar{d})}{1+\bar{b} \cdot \bar{d}}-\frac{(\bar{b}+\bar{c})(\bar{b} \times \bar{c})}{1+\bar{b} \cdot \bar{c}}-\frac{(\bar{c}+\bar{d})(\bar{c} \times \bar{d})}{1+\bar{c} \cdot \bar{d}} \\
& =\left[\frac{(\bar{b}+\bar{d}) \sin (B O D)}{1+\cos (B O \bar{D})}-\frac{(\bar{b}+\bar{c}) \sin (B O C)}{1+\cos (B O C)}-\frac{(\bar{c}+\bar{d}) \sin (C O D)}{1+\cos (C O D)}\right] \bar{e}
\end{aligned}
$$

where $\overline{\mathrm{e}}$ is a unit vector perpendicular to the plane OBCD. The vectors appearing in the bracketed expression all lie in this plane and it is not difficult to show that the bracketed expression is zero, so that the mesult is proved.

That is, if the theorems are true for T and T^{*} and if $\tilde{T}=2 T^{*}$ is a spherical triangle, then the theorems are true for \tilde{T}.

Next, we deal with the case of two spherical triangles T and $T *$ which are complementary on a lune (the figure formed by two intersecting great circles; see Figure 4.) There is no difficulty in showing that

$$
\begin{aligned}
& S_{L}=2 r^{2} C \\
& S_{L} \bar{\varepsilon}_{L}=\bar{m} \pi r^{3} \sin (C / 2) \\
& I_{O L}=\left(2 m r^{4} / 3\right)[2 C U-(\bar{m}-\overline{n n}) \sin C]
\end{aligned}
$$

where \bar{m}, \bar{n}, and \bar{c} ane mutually perpendicular unit vectors with \bar{c} along the line joining the cusps of the lune and \bar{m} throuch the center

Figure 4 of the lune as shom in Figure 4. These results ane of some interest in thenselves. Then, using these results, we can show (but we do not five
the proofs here) that if T and $T \%$ are complementary on the lune L, and if the theorems hold for T, then they also hold for T^{*}.

We are now in a position to complete the argument. The three great circle, arcs of which bound the given triangle T, cut the surface of the sphere into eigit spherical triangles. There is no difficulty in seeing that there is at least one of these triangles which has two sides whose subtended angles (at the center of the sphere) do not exceed $\pi / 2$. Denote this triangle as T_{1}.

If the third side of I_{1} subtends a central

Figure 5 angle greater than $\pi / 2$, divide T_{1} into two
subtriangles by an arc of a convenient but arbitrary great circle. At least one of these subtriangles will satisfy the conditions for the theorems.

Thus, the theorems are true for triancle T_{1}. Pairwise, $T_{1}+T_{2}$, $\mathrm{T}_{1}+\mathrm{T}_{3}, \mathrm{~T}_{1}+\mathrm{T}_{4}$ form lunes. Thus the theorems are true for $\mathrm{T}_{2}, \mathrm{~T}_{3}$, and T_{4}. Pairwise $T_{2}+T_{5}, T_{3}+T_{6}$, and $T_{4}+T_{7}$ form lunes. Thus the theorems are true for T_{5}, T_{6}, and T_{7}. Lastly, $T_{7}+T_{8}$ forms a lune, so that the theorems are true for T_{8}.

But the given triancle is one of the eight triangles T, \ldots, T. Thus the theorems are true for the given triancle.

For definiteness, we repeat the statements of the theorems.

$$
\begin{aligned}
& S=r^{2} e=r^{2}(A+B+C-\pi) \\
& \bar{E}=(r / 2 e)\left[\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|} \hat{C}+\frac{\bar{b} \times \bar{c}}{|\overline{\bar{b}} \times \bar{c}|} \hat{A}+\frac{\bar{c} \times \bar{a}}{|\overline{\mathrm{c}} \times \bar{a}|} \hat{B}\right] \\
& I_{0}=\left(2 r^{2} / 3\right)\left\{U-\left[\frac{(\bar{a}+\bar{b})(\bar{a} \times \bar{b})}{1+\bar{a} \cdot \bar{b}}+\frac{(\bar{b}+\bar{c})(\bar{b} \times \bar{c})}{1+\overline{\bar{b}} \cdot \bar{c}}+\frac{(\bar{c}+\bar{a})(\bar{c} \times \bar{a})}{1+\bar{c} \cdot \bar{a}}\right] / 2 \mathrm{e}\right\}
\end{aligned}
$$

It should be remarked that specification of radius r, unit vectors \bar{a}, \bar{b}, and \bar{c}, and cyclic order ($A B C$) does not uniquely specify a spherical triancle since there are two arcs $A B$, two arcs $B C$, and two arcs CA. Thus, additionally, qualitative information is needed to select the proper case. Vertex angles A, B, and C may be determined by use of this qualitative information and such formulas as

$$
\sin ^{2} A=(\bar{a} \cdot \bar{b} \times \bar{c})^{2} /\left[1-(\bar{c} \cdot \bar{a})^{2}\right]\left[1-(\bar{a} \cdot \bar{b})^{2}\right]
$$

Central angles \hat{A}, \hat{B}, and \hat{C} nay be determined by use of this qualitative information and such formulas as

$$
\cos \hat{A}=\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}
$$

INITIAL DISTRIBUTION LIST

Professor C. Comstock, Code 53Zk
Naval Postgraduate School
Monterey, California 93940 1
Professor P. G. Hodge, Jr. 107 Aeronautical Engr. Bldg. University of Minnesota
Minneapolis, NN 55455 1
CDR Ha Ngoc Luong, Vietnamese Navy 220/158/13 Truong Minh Giang Saigon 3, South Viet Nam 1
LCDR Vo Thanh Tam, Vietnamese Navy
SMC 1465
Naval Postgraduate School
Monterey, California 93940 1
LibraryNaval Postgradiate SchoolMonterey, California 939402
Dean of ResearchNaval Fostgraduate SchoolMonterey, California 939401
DirectorDefense Documentation Center
5010 Duke Street
Alexandria, Virginia 22314 2
Department of Mechanical Engineering (Code 59)
Naval Postgraduate School
Monterey, California 93940 1
Professor John E. Brock (Code 59Bc)Department of Mechanical EngineeringNaval Postgraduate SchoolMonterey, California 939405

$$
U 164247
$$

56853010603335

